Formalizing_Arrays as Functions

[/

String[] names = {“alan”, “mark”, “tom”“};

Correct by Construction

State Space of a Model

Definition: The state space of a model is
the set of all possible valuations of its declared constants and variables,
subject to declared constraints.

Say an initial model of a bank system with two constants and a variable:

c € N1 A Le N1 A accounts € String + 7 /* typing constraint */
Vid e id € dom(accounts) = —c < accounts(id) < L /* desired property */

Q1. Give some example configurations of this initial models state space.

Q2. How large exactly is this initial models state space?

Bridge Controller:

Requirements Document tand

ENV1 The system is equipped with two traffic lights with two colors: green and red.

ENV2 The traffic lights control the entrance to the bridge at both ends of it.
ENV3 Cars are not supposed to pass on a red traffic light, only on a green one.
ENV4 The system is equipped with four sensors with two states: on or off.

Mainland

|
/Ijl

The sensors are used to detect the presence of a car entering or leaving the bridge:
“on” means that a car is willing to enter the bridge or to leave it.

m The system is controlling cars on a bridge connecting the mainland to an island.
REQ2 The number of cars on bridge and island is limited.
REQ3 The bridge is one-way or the other, not both at the same time.

Bridge Controller: Abstraction in the Initial Model

REQ2 The number of cars on bridge and island is limited.

Island
and

bridge

Bridge Controller: State Space of the Initial Model

REQ2 The number of cars on bridge and island is limited.

Static Part of Model

axioms: Island

constants: d axm01:deN and

bridge

Dynamic Part of Model

invariants:
variables: n inv01:neN
inv02:n<d

Bridge Controller: State Transitions of the Initial Model

REQ2 The number of cars on bridge and island is limited.

axioms:
constants: d axm01:deN

Island
and
bridge

invariants:
variables: n inv0_1:neN
inv02:n<d

State Transition Diagram on an Example Configuration
d=2
n initialized to O

Before-After Predicates of Event Actions

Events ML _out ML in
n:=n+1 n=n-—1

- Pre-State
- Post-State

before—after predicates - Sate Transition

Exercise: Event Actions vs. Before-After Predicates

Q. Are the following event actions suitable for a swap between x and y?

swap
begin
temp = x
X =Yy
y .= temp

end

Design of Events: Invariant Preservation

variables: n

invariants:
inv0_1:neN
inv02:n<d

Sequents: Syntax and Semantics
Syntax

H
H+ G -
G

Semantics

Q. What does it mean when H is empty/absent?

PO/VC Rule of Invariant Preservation

d variables: n

constants:

axioms: invariants:

axm01:deN inv01:neN
inv02:n<d

Axioms

Invariants Satisfied at Pre-State
Guards of the Event

-

Invariants Satisfied at Post-State

PO/VC Rule of Invariant Preservation: Components

constants: d variables: n

axioms: invariants:

axm01:deN inv01:neN
inv02:n<d

c: list of constants G(c, v): guards of an event's
A(c): list of axioms
v and v': variables in pre- and post-state E(c, v): effect of an event’s actions
I(c, v): list of invariants
v’ = E(c, v): BAP of an event’s actions

PO/VC Rule of Invariant Preservation: Sequents

A(c)
constants: d variables: n I (C, V)
axioms: invariants: G(C, V)
axm01:deN ::zg; ZZNd —
li(c, E(c, v))

Q. How many PO/VC rules for model mO?

PO/VC Rule of Invariant Preservation: Sequents

A(c)
constants: d variables: n I (C, V)
axioms: invariants: G(C, V)
axm01:deN ::zg; ZZNd —
li(c, E(c, v))

Inference Rule: Syntax and Semantics

Syntax

A

? L Q. What does it mean when A is empty/absent?

Examples

Proof of Sequent: Steps and Structure

Outstanding Sequent to Prove Known Inference Rules

H1 - G
H1,H2 ~ G

MON

ML_out/invO_1/INV

P2

neN - n+1¢eN

Understanding Inference Rule: OR_L

Justifying Inference Rule: OR_L

Example Inference Rules HP-R HO-R

OR_L

HPvQ+ R

P1
H 0eN

P2

neN - n+1eN

H+- Q

P2’ DEC
O<nr n-1¢eN n<mrwer n-1<m Hr Pva

OR_R2

H1 - G
P3 MON
neN+~0<n H1,H2 - G

Discharging POs of original mO: Invariant Preservation

ML_out/invO_1/INV

deN
neN
n<d
=
n+1eN

ML_out/invO_2/INV

deN
neN
n<d

.
n+1<d

ML_in/invO_1/INV

deN
neN
n<d
=
n-1eN

ML_in/invO_2/INV

deN
neN
n<d

=
n-1<d

PO/VC Rule of Invariant Preservation: Revised MO

A(c)
constants: d variables: n I (C, V)
axioms: invariants: G(C, V)
axm01:deN ::zg; ZZNd —
li(c, E(c, v))

Q. How many PO/VC rules for model mO?

Discharging POs of revised mO: Invariant Preservation

ML_out/invO_1/INV

deN
neN
n<d
n<d

=
n+1eN

ML_out/invO_2/INV

deN
neN
n<d
n<d

=
n+1<d

ML_in/invO_1/INV

deN
neN
n<d
n>0

.
n-1eN

H+-P

H+ PvQ

OR_R1

H1 - G
Hi,H2 - G

—— DEC
n< =

n<mer n+i<m

INC

ML_in/invO_2/INV

deN
neN
n<d
n>0

=
n-1<d

- P2
neN+ n+1eN

0<n+ n-1eN

P2’

Initializing the System

Analogy to Induction:
Base Cases = Establishing Invariants

The Initialization Event

3T 333 Q]
I V IA ™ m
- oq Z2Z
IN

Analogy to Induction:

Inductive Cases = Preserving Invariants

ML_out

Island
and
bridge

PO of Invariant Establishment

Components

constants: d variables: n

K(c): effect of inits actions

axioms: Rtieboibg : v’ = K(c): BAP of init’s actions
axm01:deN inv01:neN
inv02:n<d

Rule of Invariant Establishment Exercise:
Generate Sequents from the INV rule.
A(c)

= INV
li(c, K(c))

Discharging PO of Invariant Establishment

deN
- mit/inv0_1/INV
OeN
H1 - G
MON
H1, H2 - G

nit/inv0_2/INV

F 0eN

P3
neN - 0<n

