Formalizing Arrays as Functions

String[] names = {"alan", "mark", "tom"};

Correct by Construction

State Space of a Model

Definition: The state space of a model is the set of <u>all</u> possible valuations of its declared constants and variables, subject to declared constraints.

Say an initial model of a bank system with two <u>constants</u> and a <u>variable</u>: $c \in \mathbb{N}1 \land L \in \mathbb{N}1 \land accounts \in String \nrightarrow \mathbb{Z}$ /* typing constraint */ $\forall id \bullet id \in dom(accounts) \Rightarrow -c \leq accounts(id) \leq L$ /* desired property */

Q1. Give some example configurations of this initial model's state space.

Q2. How large exactly is this initial model's state space?

Bridge Controller: Abstraction in the Initial Model

REQ2

The number of cars on bridge and island is limited.

Bridge Controller: State Space of the Initial Model

Static Part of Model

constants: d

axioms: $axm0_1 : d \in \mathbb{N}$

Dynamic Part of Model

variables: /

invariants: $n \in \mathbb{N}$

inv0_**2** : $n \le d$

Bridge Controller: State Transitions of the Initial Model

ML_out **begin** n := n + 1**end**

begin *n* := *n* − 1 **end**

 ML_in

State Transition Diagram on an Example Configuration

Before-After Predicates of Event Actions

- Pre-State
- Post-State
- Sate Transition

Exercise: Event Actions vs. Before-After Predicates

Q. Are the following event actions suitable for a swap between x and y?

```
swap
begin
    temp := x
    x := y
    y := temp
end
```

Design of Events: Invariant Preservation

variables: n

ML_out **begin** n := n + 1

end

ML_in **begin** n := n - 1

end

invariants:

 $inv0_1: n \in \mathbb{N}$

inv0_2 : $n \le d$

Sequents: Syntax and Semantics

Syntax

$$H \vdash G$$
 G

Semantics

Q. What does it mean when H is empty/absent?

PO/VC Rule of Invariant Preservation

constants: dvariables: n n:=n+1 endaxioms: $axm0_1: d \in \mathbb{N}$ invo_1: $n \in \mathbb{N}$ $inv0_2: n \le d$ ML_out
begin n:=n+1 endML_in
begin n:=n-1 end

Axioms

Invariants Satisfied at Pre-State
Guards of the Event

Invariants Satisfied at Post-State

PO/VC Rule of Invariant Preservation: Components

c: list of constants

A(c): list of axioms

v and v': variables in pre- and post-state

I(c, v): list of invariants

G(c, v): guards of an event's

E(c, v): effect of an event's actions

v' = E(c, v): BAP of an event's actions

PO/VC Rule of Invariant Preservation: Sequents

A(c) I(c, v) G(c, v) \vdash $I_i(c, E(c, v))$

Q. How many PO/VC rules for model m0?

PO/VC Rule of Invariant Preservation: Sequents

$$A(c)$$
 $I(c, \mathbf{v})$
 $G(c, \mathbf{v})$
 \vdash
 $I_i(c, \mathbf{E}(c, \mathbf{v}))$

Inference Rule: Syntax and Semantics

Semantics

Q. What does it mean when A is empty/absent?

Examples

Proof of Sequent: Steps and Structure

Understanding Inference Rule: OR_L

$$\frac{H,P \vdash R \qquad H,Q \vdash R}{H,P \lor Q \vdash R} \quad \mathbf{OR} \bot \mathbf{L}$$

Justifying Inference Rule: OR_L

$$\frac{H,P \vdash R \qquad H,Q \vdash R}{H,P \lor Q \vdash R} \quad \mathbf{OR}_{-}\mathbf{L}$$

Discharging POs of original mO: Invariant Preservation

OR R1

- MON

DEC

PO/VC Rule of Invariant Preservation: Revised MO

 $I_i(c, \boldsymbol{E(c, v)})$ Q. How many PO/VC rules for model m0?

Discharging POs of revised mO: Invariant Preservation

Initializing the System

Analogy to Induction:

Base Cases ≈ **Establishing** Invariants

Analogy to Induction:

Inductive Cases ≈ Preserving Invariants

The Initialization Event

init **begin** n:= 0 **end**

PO of Invariant Establishment

Components

K(c): effect of init's actions

v' = K(c): BAP of init's actions

Rule of Invariant Establishment

$$A(c)$$
 \vdash
 $I_i(c, K(c))$

Exercise:

begin

end

n := 0

Generate Sequents from the INV rule.

Discharging PO of Invariant Establishment

$$d \in \mathbb{N}$$
 \vdash
 $0 \in \mathbb{N}$
 $init/inv0_1/INV$

$$d \in \mathbb{N}$$
 \vdash
 $0 \le d$
 $init/inv0_2/INV$

